Calculating Distance

The distance around a circle, also known as the perimeter or the circumference is directly related to its diameter. This means that as the diameter of a circle increases, so does its circumference.

So why is this important? When we program our robot, we generally tell the wheels to turn for a given amount, either in degrees or rotations. However, this number doesn't accurately tell us the exact distance the robot has travelled in a straight line. We need to calculate the actual distance.

1. Program your robot to drive forward for $\mathbf{1 0}$ rotations. Using a ruler or measuring tape, determine how far the robot travelled.
2. How far would it have travelled in $\mathbf{1}$ rotation?
"Hint: This is a division problem"

Use the following formula to help you determine how far each wheel will travel in one rotation.

Circumference:

The circumference, or distance around a circle, can be calculated using a special formula:

$$
C=p i \times d
$$

Vocab: C= Circumference, $\mathrm{d}=$ diameter and pi is approximately 3.14.

| 3. Measure the diameter of the wheels on your robot. | |
| :--- | :--- | :--- |
| 4. Calculate the circumference using C=pixd | |
| 5. Does the C in \#4 and the Distance calculated from \#2 match? | |
| 6. So if we know how far the robot will travel in one
 rotation, how far will it travel in 2.5 rotations? | |
| 7. How far will it travel when the wheels turn 720
 degrees? (Hint: One rotation equals how many
 degrees?) | |
| 8. We need our robot now to travel 500mm / 20". How many
 rotations do we need to go to achieve this? Calculate and then
 try it out! | |

Test

9. Using a smaller or larger set of wheels, calculate how far your robot would travel in 10 rotations. Run the experiment and see if you were right. Show your math
